Urban Planning & Sustainable Mobility Robert Cervero, UC Berkeley

Meta-Evidence on 5Ds & VKT in US Vehicle Kilometers Traveled (VKT)

Elasticities from Regressions & Logits

Category	Urban Form Description	Elasticity for Change in VMT	
Density	Household/Population Density	-0.04	
Diversity	Land Use Mix (entropy)	-0.09	
Design	Intersection/Street Density	-0.12	
Destination Accessibility	Job Accessibility By Auto	-0.20	
Distance to Transit	Distance to Nearest Transit Stop	-0.05	

Source: R. Ewing & R. Cervero, Travel and the Built Environment: A Synthesis, *Transportation Research Record* 1780, 2001; Confirmed in Ewing & Cervero, *Journal of the American Planning Association* 2010.

Elasticity = (% \triangle VKT) / (% \triangle in "D" Variable)

Balanced Growth

VKT/capita of Core Residents ~ 40% regional average

China's Urban Transformation

Compact, Mixed Uses,

Bike/Ped Friendly

<u>Isolated, Gated Superblocks</u> <u>in Suburbs:</u>

R. Cervero and J. Day. Suburbanization and Transit Oriented Development in China, *Transport Policy*, Vol. 15, 2008, pp. 315-323.

2008 Study: Suburban Relocation & Travel in Shanghai Previous residences (2002-2004)

2008 Study: Suburban Relocation & Travel in Shanghai

Current Residences (2005-2007) SURVEYED: IV Outer-**19 Housing Projects Outer Ring** 900 households 2820 individuals III Outer-Ring **Jianggiao** 38% 1 in VKT 1 Inner-Ring among movers; 22% Tamong **II Middle-Ring** HHs living < 1 KM of Meilong/ Metrorail Xinzhuang ... Sanlin

R. Cervero and J. Day. Suburbanization and Transit Oriented Development in China, *Transport Policy*, Vol. 15, 2008, pp. 315-323.

Station

Urban Design & Pedestrian Access to Metros

Study of VMT & Carbon Footprint across 370 U.S. Metropolitan Areas, 1990-2004

Density & VMT/Capita

Structural Equation Path Model

Density & Roads

Density's VMT-Reducing Impacts Moderated by Road Design ~ 1/3

Meta-Evidence on 4 Ds & Transit Use in US Transit Ridership

Elasticities from Regressions & Logits

Dimension	Metric	# Studies	Elasticity
Density	Population Density	10	.07
	Job Density	6	.01
Diversity	Land Use Mix (0-1)	6	.12
Design	Intersections/Street Density	4	.23
	Connectivity (4-way inter.)	5	.21
Distance to Transit	Distance	3	.29

Source: R. Ewing & R. Cervero, Travel and the Built Environment: A Meta-Analysis, Journal of the American Planning Association 2010.

Elasticity = $(\% \triangle \text{ Ridership}) / (\% \triangle \text{ in "D" Variable})$

TOD & TDM

2006 Experiment of VMT Charge in Portland OR

183 HHs – some paid flat VMT
 rate; others paid rate that varied by
 time and location – 10¢/mile peak;
 0.5¢/mile off-peak (congestion charge)

 Found greater VMT reduction in denser, mixed-use neighborhoods with congestion charges

Zhan Guo, Asha Weinstein Agrawal, and Jennifer Dill Journal of the American Planning Association, Vol. 77, No. 3, Summer 2011

Urban Regeneration & BRT in Seoul, Korea

Redesign of Seoul Plaza "Calmed" Traffic with a Pedestrian Oval

Cheong Gye Cheon

Freeway
Removal/
Stream
Restoration

Seoul, Korea

BRT: Key to absorbing traffic displaced by road capacity losses

Exclusive median bus lanes: 7 lines/84 km

Curbside bus lanes: 293.6 km

Greening of Central Seoul

Thermal Intensity in CBD

Average Lowering of Temperature of 2%~5%

Figures refer to actual maximum passenger demand, not theoretical maximum capacity. Figures are from ITDP field surveys. Source: itdp-china.org

Multi-modal (NMT) Integration was a conscientious part of system planning...NOT an Afterthought

Perpendicular "Green Connectors"

Seamless Pedestrian
Connectivity through
same-grade footbridges
and BRT/Commercial
Building integration

Integration of BRT station bridge & building, with double-tier bike parking under the bridge.

Sources

2009.

Place-making & Value

1980s-90s "Pre-Place-making" Station Access

Post-2000s "Place-making" Station Access

Ped-Friendly Access & Place-making Designs
Increased profits ~ 25%; Ridership Bonus ~ 20%

Transit Value Capture in So. California

Back to the Future

