

Directorate General of Electricity Ministry of Energy and Mineral Resources Republic of Indonesia

DISTRIBUTED GENERATION ON ELECTRICITY SYSTEM IN INDONESIA

Benhur PL. Tobing
Deputy Director for Electricity Cooperation

The APERC Annual Conference

26 – 27 February 2013 Tokyo, Japan

Current Condition of Power Sector In Indonesia

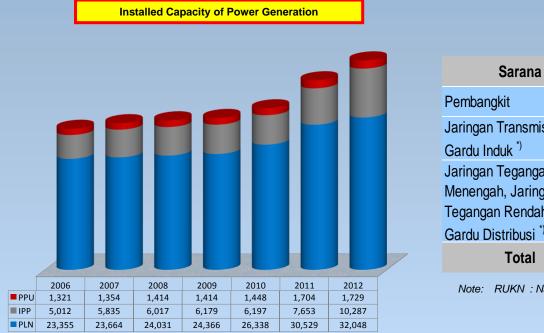
1

Government Policy On Power Sector

(Based on Law No. 30 Year 2009 on Electricity)

Objective of Electricity Development

To ensure the availability of electricity in sufficient quantity, good quality and reasonable price in order to improve the welfare of the people (article 2 clause (2)).

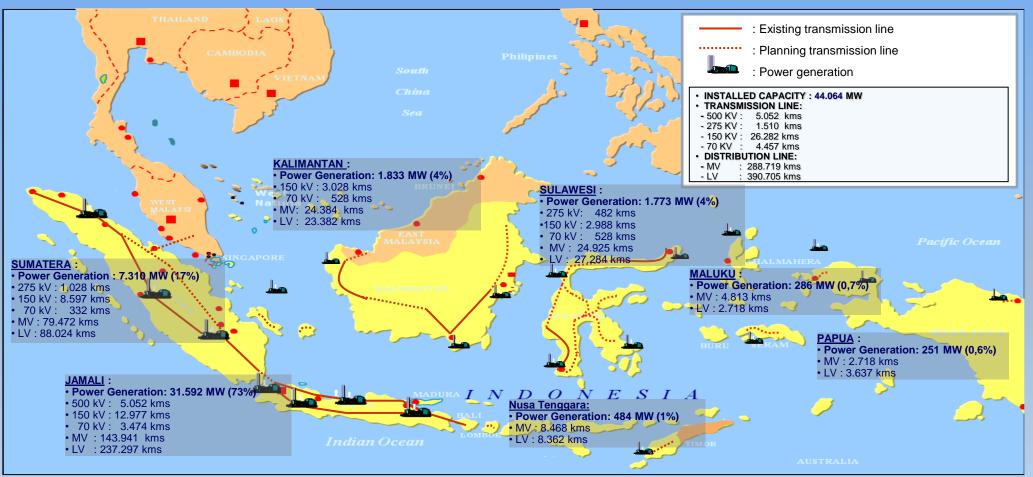

Utilization of Primary Energy Source

- Primary energy sources from domestic and overseas shall be used optimally in accordance with National Energy Policy to ensure a sustainable supply of electricity (article 6 clause (1)).
- Utilization of domestic energy sources will be prioritized for national interests (article 6 clause (3)).

Overview of Indonesian Electricity Condition

(Current Condition)

- □ Total installed capacity: 44,064 MW (PLN 73%, IPP 23%, and PPU 4%)
- **Current electrification ratio:** 76.47%
- Energy mix in power generation: Coal 51%, Gas 23%, Oil 15%, Hydro 6%, Geothermal 5%
- **Total investment in Power Sector : USD 10.7 Billion/year**



	(juta USD)		
Sarana	Jawa - Bali	Luar Jawa - Bali	Total
Pembangkit	178,858.1	176,672.2	355,530.3
Jaringan Transmisi dan Gardu Induk ^{*)}	6,010.3	5,503.5	11,513.8
Jaringan Tegangan Menengah, Jaringan Tegangan Rendah dan Gardu Distribusi ^{*)}	6,194.0	6,005.5	12,199.5
Total	191,062	188,181	379,244

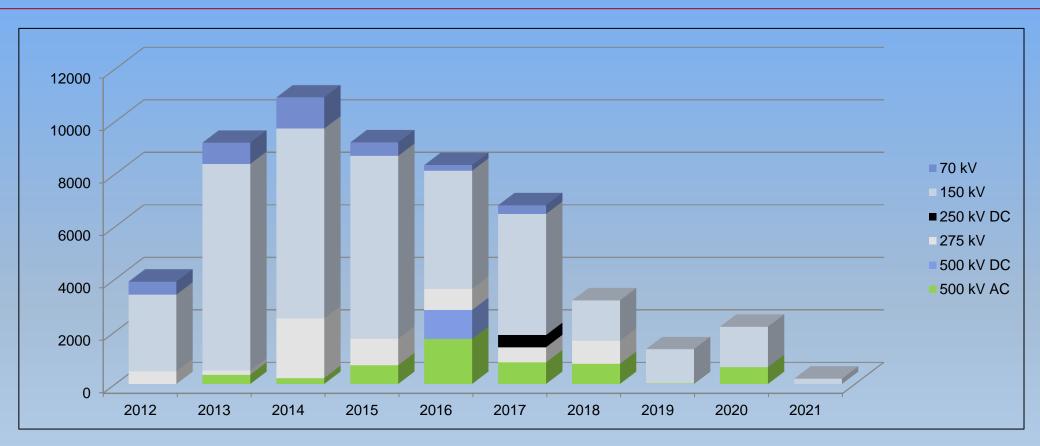
Investment Needs

Note: RUKN : National Electricity General Plan

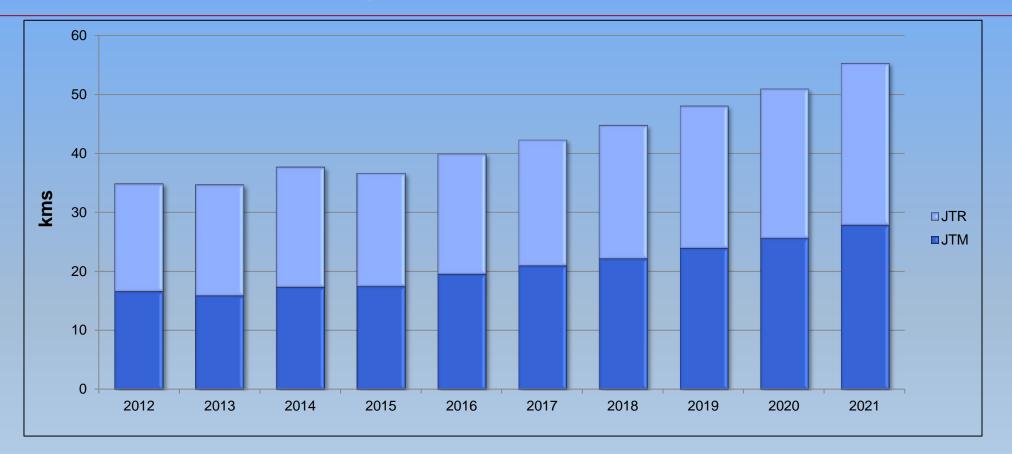

Indonesia Electricity Infrastructure

Status: 2012

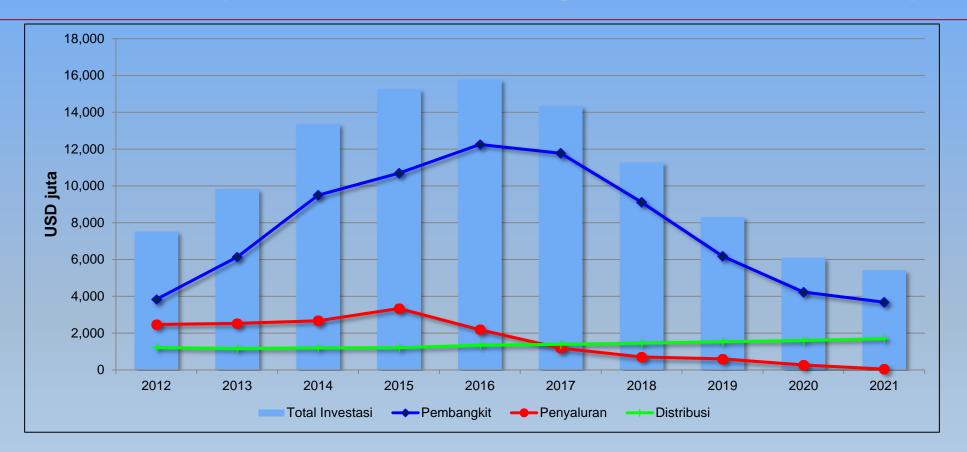
- Total of national power generation installed capacity until early October 2012 is amount of 44,064 MW, transmission line is amount of 37,301 kms, and distribution line is amount of 679,424 kms.
- □ The power system which has been well interconnected is in Java-Bali System and Sumatera System.


Estimation of Electricity System Condition For The Next 10 Years

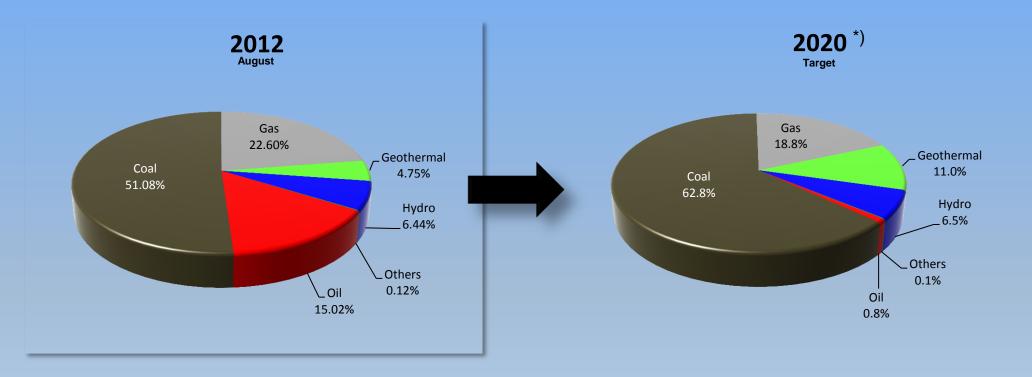
□ Based on PLN's Electricity Business Plan (RUPTL PLN) 2012-2021, stated that the electricity demand growth is projected about 8.65% per year.


□ In order to fulfill the demand growth the additional capacity of power generation that will be developed up to year 2021 is about 57,250 MW or 5,725 MW per year in average.

Development of Transmission Line


Up to year 2021, the total transmission line that will be developed about 55,234 kms, consists of 500 kV dan 150 kV line for Java-Bali system and 500 kV, 275 kV, 150 kV, dan 70 kV line for outside Java-Bali system. Those consist of 5.241 kms 500 kV AC transmission line, 1.100 kms of 500 kV DC, 6.207 kms of 275 kV, 462 kms of 250 kV DC, 38.664 kms of 150 kV and 3.560 kms of 70 kV.

Development of Distribution Line


- Up to 2021, total length of distribution line are 425.794 kms, that consist of 207.539 kms of Middle-Voltage line (JTM) and 218.255 kms of Low-Voltage line (JTR).
- Distribution development plan objectives are to maintain system realibility and to accommodate additional new consumer.

Investment Requirement for Electricity Infrastructure Development

- □ Up to year 2021, the total investment requirement for electricity infrastructure development is about USD 107,117 Million (USD 10,712 Million per year in average) which is consist of USD 77,376 Million for power generation, USD 15,975 Million for transmission and substation and USD 13,766 Million for distribution.
- □ The largest investment requirement is for power generation, afterward for transmission and substation and then for distribution development.

Target of Energy Mix For Power Generation

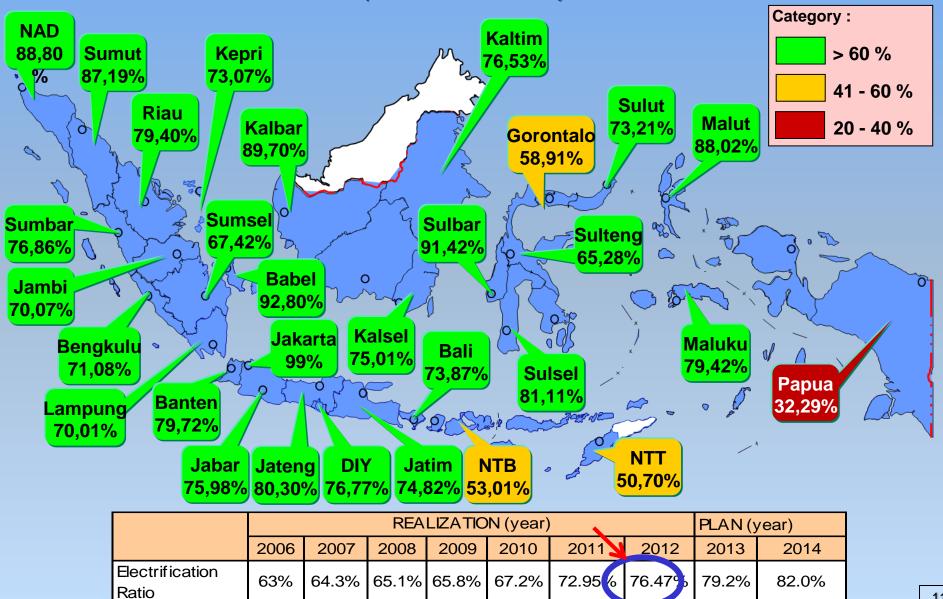
- → Electricity efficiency effort is conducted through diversification of primary energy in power generation (supply side) by optimizing utilization of gas, replacement of HSD to MFO, increasing coal utilization, and developing renewable energy power generation.
- \rightarrow Gas and coal are given priority to reduce dependence on oil in power generation.

*Source: RUPTL PLN 2012-2021

Electricity Development Priorities Up To 2020

Power Generation

- To finalize the construction of Fast Track Program 10.000 MW Phase I and Phase II
- To finalize the construction of power generation project owned by PLN and IPP in regular program
- To finalize development of GeoPP and HEPP in an effort to utilize new and renewable energy and local energy.
- To encourage the development of Pump Storage HEPP to minimize utilization of gas and oil during the peak load in Java-Bali system.
- To encourage the development of Mine Mouth CFPP in an effort to utilize the potential of Low Rank Coal and CFPP with Ultra Super Critical technology to reduce emmision.
- To accelerate gas allocation and supply for power generation in an effort to reduce oil cunsumption.


Transmission Line

- To finalize development of transmission line related to Fast Track Program 10.000 MW Phase I and Phase II
- To solve de-bottlenecking of transmission line especially in Java-Bali and Sumatera system
- To develop Java-Sumatera interconnection system in order to transfer power from a large Mine Mouth CFPP in Sumatera to Java.
- To develop interconnection system in Kalimantan and Sulawesi
- To develop West Kalimantan-Serawak interconnection system in order to fulfill the demand and to reduce the oil utilization.
- To develop Sumatera-Malaysia Peninsula interconnection system in order to optimize the power system operation.

To Accelerate The Electrification Ratio Level

Realization of Electrification Ratio

(As of December 2012)

APPLICATION OF DISTRIBUTED GENERATION

In Indonesia

Scope of Distributed Generation

Bunaken 300 kW PV Plant, isolated grid

Siteki 1,2 MW Mini Hydro Plant, grid connected

- Distributed generation also known as embedded generation is a small capacity power generation installation that generates electricity from many small energy sources, which can be renewable or thermal energy.
- It may be connected to the 20 kV distribution lines which is part of a larger grid, or supplying an isolated MV/LV grid.
- Sources of primary energy may come from renewables such as hydro, PV, wind, biomass, etc or thermal energy such as micro gas engines or other type of captive power.
- Installed capacity < 10 MW, and must confirm with Distribution Code when connecting to the grid
- *Feed-in tariff* is applied for energy transaction

- Need to ensure that the distribution system working properly as the distributed generation connected. Conditions to be maintained in the system are:
 - voltage regulation;
 - thermal ratings of equipment being not exceeded;
 - fault ratings of switchgear and cables being not exceeded;
 - fault current contribution;
 - voltage disturbance affected in terms of step changes, flicker and harmonics being kept to a minimum and within accepted limits;
 - reverse power flow
 - protection coordination

Commercial Consideration for Distributed Generation (DG) Connection

- Power Purchase Agreement using Feed-in Tariff : for capacity < 10 MW from renewables energy, PLN buys the energy at a pre-determined tariff.
- PPA periods cover up to 15 years and can be renewed.

- MD No. 04, 2012: New electricity tariff generated from renewable energy power plants up to 10 MW (valid to date)
- Ministry of Energy and Mineral Resources Decree No. 04 was released on January 31, 2012
- The utility or PLN (a monopoly state-own electricity company) has obligation to offtake the electricity form renewable energy sources
- The tariff was set-up based on the avoided cost level of utility's electricity delivery cost (cost of good sold) regionally
- New fixed floor and un-negotiated tariff from all kind of renewable energies (can be the excess power from it) up to 10 MW.

New Feed-in Tariff from all kind of renewable energy power plants below
 10 MW (including the excess power from it) with new floor of (1 USD = 9,200 IDR):

	Price in IDR	Remark							Price i	n USD Cent
Renewable Energy	9.200		lawa/Bali	Sumatera/	n	Maluku & Papua	Jawa, Madura, Bali & Sumatera	Sulawesi, Kalimanta n, NTT/NTB		all over Indonesia
		F	1	1,2	1,3	1,5	1	1,2	1,3	
Renewable energy	656	JTM	7,13	8,56	9,27	10,70				
	1.004	JTR	10,91	13,10	14,19	16,37	,			
Biomass/BioGas	975	JTM					10,60	12,72	13,78	
	1.325	JTR					14,40	17,28	3 18,72	
Zero Waste	1.050	JTM								11,41
	1.395	JTR								15,16
Sanitary Landfill	850	JTM								9,24
	1.198	JTR								13,02

Benefits from Distributed Generation (DG)

- When DG installed in remote areas, they will ease the logistic issue of supplying fuel to the remote locations
- When installed in larger interconnected networks, they will help reduce distribution losses
- Improve voltage regulation and reliability of supply when the output of DG is not intermittent such as small hydro.

Mini Hydro Power Plant

	IPP		
Status	Number	Installed Capacity (kW)	
Operation	20	43.790	
Construction	42	158.408	
PPA	41	206.750	
Permit Process	49	186.034	
Proposal	31	157.342	
Total	183	752.324	

		PLN		
Status	Number	Installed Capacity (kW)		
Operation	104	120.280		
Construction	10	15.200		
Study	83	188.784		
Total	197	324.264		

Concentrated PV Plant

NO.	Project Name	Location	Capacity (kWp)	STATUS	
1	PLTS BUNAKEN	PULAU BUNAKEN, SULUT	335	Operasi	
2	PLTS NAIRA	BANDA NAIRA, MALUKU	100	Operasi	
3	PLTS SAONEK	KEP. RAJA AMPAT, PAPUA	40	Operasi	
4	PLTS DERAWAN	P. DERAWAN, KALTIM	170	Operasi	
5	PLTS TOMIA	PULAU WAKATOBI SULTRA	75	Operasi	
6	PLTS TRAWANGAN	GILI TRAWANGAN NTB	200	Operasi	
7	PLTS MARAMPIT	PULAU MARAMPIT, SULUT	125	Operasi	
8	PLTS MIANGAS	PULAU MIANGAS, SULUT	85	Operasi	
9	PLTS LABALEKANG	P. LEMBATA, NTT	200	Operasi	
	то	1,330			

PLN Program [100 Islands]

MALUKU 39. Kai Tanimber 40. Kur 41. Elat MALUKU UTARA 42. Morotai (Daruba) 43. Merotai (Bere bere) 44. Patani 45. Obi (Laiwui) 45. Tašabu (Bobong) 47. Talinbu (Gila) 48. Margole (Dofn) 49. Kayoa 50. Hiri (Tobolobe) 51. Makian (Ngofagita). 52. Kasirutu 53. Moti

NUSA TENGGARA TIMUR 54. Maritang 55. Pura 56. Nule 57. Ruijua 58. Solor 59. Lamulera 60. Solor Barat 61. Panuma 62. Naloriwoy 63. Runea 64. Komedo

NUSA TENGGARA BARAT 65. Cili Travangan (Ext.) 66. Cili Mene 67. Cili Ali 68. Maringli 69. Medang 70. Sebote 71. Labuar Haji 72. Migo 73. Lanung

74. Hojo Pahas

100% SOLAR ENERGY FOR 100 ISLANDS

PAPUA
1. Mindiptana
2. Керрі
3. Any
4. Kinuam
PAPUA BARAT
5. Manaaam
6. Babo
7. Sausator
8. Kokar
Aitiayo
10. Manggonswan
II. Mbruandi
12. Supraima
13. Nusibabarak
14. Owi
15. Dafi
16. Kampung Fristen
17. Kampung Seporkren
18. Kampung Yembeser
19. Kampung Wawiyai
20. Davni
21. Saribi
22. Kabare
23. Waiguma
24. Sample
MALUKU
25. Tahalupa (P. Kelang)
26. Nusa Ela (P. Tiga)
27. Kesai
28. Manawoka (Sera)
29. Teor (Lana)
30. Arabalas (Masawey)
31. Parir Putih (Kab. Buru)
32. Panjung (Kab. SBT)
33. Wetar (Elwaki)
34. Kisar (Wonreli)
35. Leti (Serwaru)
36. Mos (Mos)
37. Lakor (Scira)

38. Romang (Hila)

SULAWESI SELATAN
75. Kamarang
76. Kadingareng
77. Tanskeke
78. Batang Lumpo
79. Sabutong
80. Salemo
SULAWESI TENGGARA
81. Kapota
82. Kabaena
SULAWESI UTARA
83. Manada Tan
84. Bunaken (Est.)
85. Nain
86. Mantehoge
87. Talise
83. Makulahi
89. Depalan
89. Dapalan 90. Karotang
91. Miangas
92. Marampit
93. Nanodakele
94. Matore
95. Biaro
96. Gangga
SULAWESI TENGAH
97. Kep Togian
98. Kep Togian
99. Kep Togian
100.Kep Togian
10) Sinutang
KALIMANTAN SELATAN
102 Marapadan
103 Kerajaan
104 Kerumputan
105 Kanisian
106 Tanjung Nyiar

PLN Program [PV for 1000 Islands] until 2014

Concentrated PV for 1000 Islands (40 – 300 kWp)

		TOTAL		
No	Region	Number of Location	Capacity	
1	West Indonesia	358	61,825	
2	East Indonesia	293	50,507	
3	Java Bali	21	6,284	
Total		672	118,616	

In Summary

- Indonesia seeks to enhance contribution of distributed generation to the electricity supply provision.
- It also aims to increase role of renewable energy.

ありがとう Thank You...