APEC Energy Demand and Supply Outlook 6th Edition 2-2 Improved Efficiency Scenario (IES)

Martin Brown-Santirso 11 May 2016, Canberra, Australia

1. Scenario Introduction

Improved Efficiency Scenario – Rationale

- Energy efficiency is the most effective tool APEC economies have to curve energy demand and realize associated benefits.
 - The international Energy Agency calls energy efficiency the "first fuel"
- APEC has a 45% energy intensity reduction target compared to 2005
- IES explores a more aggressive approach to energy efficiency compared to BAU to enable APEC to meet its target and maybe more?
- The IES assumes energy efficiency opportunities and policies in each sector that are available and are cost effective today:
 - In fact most of these policies are in place in some way somewhere

Estimated potential savings in the industrial subsector from adoption of BATs

Sub-sector	Assumed improvement potential (%)		
	Developed economies	Developing economies	
Iron and steel	10 - 15	25 – 35	
Chemical and petrochemicals	10 - 25	15 – 30	
Non-metallic mineral	20 - 25	20 – 30	
Food and tobacco	25 – 40	25 – 40	
Paper, pulp and printing	20 - 30	15 – 30	
Non-ferrous metals	5 - 40	5 – 55	

Source: Saygin et al. (2010).

Industrial subsectors still have efficiency potentials of up to 55% in APEC economies.

Buildings energy efficiency assumptions

Key efficiency assumptions in buildings in the BAU and IES by sub-sector

Sactor	Appliances	Measure	Range of efficiency		
Sector	Appliances		Highest in IES	Lowest in BAU	
Residential	Fridges	Yearly consumption	216 kWh/y	644 kWh/y	
	Air conditioners	Efficiency ratio	5.81	2.55	
	Water heaters – fuel	Percentage	91%	76%	
	Lighting	Watts	10 W LED	60 W Inc.	
	TV	Yearly consumption	102 kWh/y	261 kWh/y	
	Washing machines	Yearly consumption	6 kWh/y	194 kWh/y	
	Standby	Watts per device	1 W	5 W	
	Space heating – fuel	Percentage	96%	71%	
residential	Space heating – heat pump	Coefficient of performance	5.81	2.6	
Commercial	Lighting	% Improvement	30%		
	Cooling	% Improvement	40%		
	Ventilation	% Improvement	20%		
	Refrigeration	% Improvement	34%		

Source: McNeil et al. (2008)

Appliances and buildings have significant energy efficiency potentials, especially in space conditioning options.

Transport energy efficiency assumptions

Transport efficiency annual improvement assumptions in BAU and IES, 2013-40

Scenario	Labelling scheme	Group of economies	2013-30	2030-40
BAU –	No	Brunei Darussalam, Indonesia, Malaysia, Mexico, Papua New Guinea, Peru, Philippines, Russia, Thailand	1%	1%
	Yes	Australia, Canada, Chile, China, Hong Kong, Japan, Korea, New Zealand, Singapore, United States, Viet Nam, Chinese Taipei	2%	1%
Improved Efficiency	No	Brunei Darussalam, Indonesia, Malaysia, Mexico, Papua New Guinea, Peru, Philippines, Russia, Thailand	2%	2%
	Yes	Australia, Canada, Chile, China, Hong Kong, Japan, Korea, New Zealand, Singapore, United States, Viet Nam, Chinese Taipei	2.7%	2%

Source: APEC (2015).

Fuel efficiency standards can double the rate of fuel economy improvements between 2030 and 2040.

IES: Results

Total savings of 13% or 921 Mtoe

APEC's target can be met by 2032 under the Improved Efficiency Scenario

Overall results

-BAU Energy Intensity Index -Alternative Energy Intensity Index

Total savings of 921 Mtoe equivalent to the combined current demand of Russia, Japan and Korea. Causing demand to peak by 2025

China and the US account for 64% of savings

Energy savings in the IES by regional grouping, 2015-40

China has the largest saving potential: it delivers 43% of total APEC savings. The US follows with 21%

Note: **Oceania** (Australia, New Zealand and PNG), **Other Americas** (Canada, Chile, Mexico and Peru), **Other north-east Asia** (Hong Kong, Japan, Korea and Chinese Taipei), **South-East Asia** (Brunei Darussalam, Indonesia, Malaysia, Philippines, Singapore, Thailand and Viet Nam).

Industry saves 372 Mtoe or 16%

Industry final energy demand in the BAU and IES, 2013-40

Strong energy demand-GDP growth decoupling in industry, where 79% output growth is fuelled by only 10% energy demand growth

Note: Excludes non-energy use.

Sources: APERC analysis and IEA (2015a)

Largest savings potential in other less intensive industry

Energy savings by sector and by regional grouping, 2013-40

The majority of growth and savings in the Industry sector come from the less intensive sub-sectors.

Note: The three most energy-intensive sub-sectors in the APEC region are iron and steel, chemical and petrochemicals, and non-metallic minerals

Buildings provides 30% of the savings

Buildings sector energy savings by sub-sector, 2013-40

Unlike industry and transport, buildings energy demand does not peak in the IES, although growth is very small at end of the period

Sources: APERC analysis and IEA (2015a

Efficiency potential in many appliances

Residential energy savings by end-use, 2015-40

Space and water heating and lighting have the largest potential in the residential subsector

Note: Space heating includes building improvements as well as appliances.

Transport provides 29% of the savings

Road transport energy savings, 2015-40

Transport energy demand peaks in 2025 at 1 695 Mtoe.

Urban design reduces vehicle stock by 9%

Shares of vehicle stock by technology in the BAU and Improved Efficiency Scenarios, 2013 and 2040

New technology vehicles increases by 70 million units (increasing its share to 29%)

Notes: LNG = liquefied natural gas; CNG = compressed natural gas. The size of the circle reflects overall growth of transport energy demand. Sources: APERC analysis and IEA (2015a).

- The IES shows 13% energy savings compared to BAU and demand peaks by 2029. Saving 921 Mtoe.
- China provides the largest savings, accounting for 43% of the total.
- Industry provides the largest sector share—40% or 372 Mtoe—of savings through promoting best available technologies (BATs).
- Fuel efficiency standards for vehicles are key to achieve the 15% reduction in demand in the transport sector.
- Buildings save 279 Mtoe (13%) from appliance and building envelope improvements. Heating and cooling are particularly important.
- APEC achieves its 45% energy intensity target by 2032 in this scenario, and is 49% lower than 2005 by 2035.
- Is a more ambitious target possible?

Thank you for your kind attention

http://aperc.ieej.or.jp/

