APEC Energy Demand and Supply Outlook 6th Edition High Renewables Scenario

Alexey Kabalinskiy 11 May, 2016, Canberra, Australia

Renewables drive growth

Total Final Energy Demand in APEC

The Doubling goal is NOT achieved under BAU. Accelerated development of renewables is necessary.

Source: IEA statistics 2015 and APERC research.

Renewables in power

Renewable policies in APEC

Economy	RE-specific legislation	RE-related policy /plan	Development strategy	Target RE generation share	Feed-in Tariff (FiT)	Renewable portfolio standard (RPS)	Tax incentive
Australia	\checkmark	\checkmark	\checkmark	23.5% in 2020	-	-	\checkmark
Brunei Darussalam	-	\checkmark	\checkmark	10% by 2035		-	-
Canada	-	\checkmark	\checkmark	$\sqrt{*}$	$\sqrt{*}$	$\sqrt{*}$	\checkmark
Chile	\checkmark	\checkmark	\checkmark	20% in 2025, 70% in 2050	-	-	-
China	\checkmark	\checkmark	\checkmark	20% primary in 2030	\checkmark	\checkmark	-
Hong Kong	-	\checkmark	\checkmark	\checkmark	-	-	\checkmark
Indonesia	-	\checkmark	\checkmark	232 Mtoe (247.4 GW) in 2050	\checkmark	-	\checkmark
Japan	\checkmark	\checkmark	\checkmark	22-24% in 2030	\checkmark	-	\checkmark
Korea	\checkmark	\checkmark	\checkmark	(13.4%) in 2035	-	\checkmark	\checkmark
Malaysia	\checkmark	\checkmark	\checkmark	3% in 2020		\checkmark	\checkmark
Mexico	\checkmark	\checkmark	\checkmark	(29.1%) in 2028	-	-	\checkmark
New Zealand	-	\checkmark	\checkmark	90% in 2025		-	-
Papua New Guinea	-	-	-	100% in 2050		-	-
Peru	\checkmark	\checkmark	\checkmark	60% (5%^) in 2020		-	-
The Philippines	\checkmark	\checkmark	\checkmark	(+9.9 GW, +200%) in 2030	\checkmark	\checkmark	\checkmark
Russia	-	\checkmark	\checkmark	4.5%^ (25 GW^) in 2030	\checkmark	-	-
Singapore	-	\checkmark	\checkmark	_	-	-	-
Chinese Taipei	\checkmark	\checkmark	\checkmark	12.6% (27.1%) in 2030	\checkmark	-	\checkmark
Thailand	-	\checkmark	\checkmark	20% in 2036	\checkmark		\checkmark
United States	-	\checkmark	\checkmark	√*	$\sqrt{*}$	$\sqrt{*}$	\checkmark
Viet Nam	-	\checkmark	\checkmark	6% in 2030	\checkmark	-	-

APEC Renewable capacity potential in 2013

Only 31% of renewable economic potential is utilised in APEC. Solar and biomass potential to be developed in South-East Asia.

Note: this map is for illustrative purposes and is without prejudice to the status of or sovereignty over any territory, Oceania (Australia, New Zealand and PNG), Other Americas (Canada, Chile, Mexico and Peru), Other north-east Asia (Hong Kong, Japan, Korea and Chinese Taipei), South-East Asia (Brunei Darussalam, Indonesia, Malaysia, Philippines, Singapore, Thailand and Viet Nam).

APEC renewables supply cost curve

Continued reduction of LCOE for solar and wind technologies. Large range of LCOE is due to resource availability and cost of financing.

Current renewable policy falls short of the doubling

Renewable generation by scenario

Renewable generation in 2040

Renewables expand greatly in China, the United States and South-East Asia. China is leading in both installed capacity and generation.

Note: this map is for illustrative purposes and is without prejudice to the status of or sovereignty over any territory, for **sub-regions** see slide 5.

Renewable power in the High Renewables Scenario

Major growth of solar in Asia, the United States and Oceania

Note: this map is for illustrative purposes and is without prejudice to the status of or sovereignty over any territory, for **sub-regions** see slide 5, **BAU** = Business-as-usual, **HR** = High Renewables

Source: IEA statistics 2015 and APERC analysis

Renewables in transport

Biofuel policies in APEC

Economy	Regulation	Blend rate mandate		Blend rate target		Incentives,
		Bioethanol	Biodiesel	Bioethanol	Biodiesel	subsidies and taxation
Australia	\checkmark	$\sqrt{*}$	$\sqrt{*}$	E4/E5*	B2*	\checkmark
Brunei Darussalam	-	-	_	-	-	
Canada	\checkmark	up to E8.5^	up to B4^	E5	B2	\checkmark
Chile	-	-	-	-	-	
China	-	E10^	-	10 Mt (2020)	2 Mt (2020)	\checkmark
Hong Kong	\checkmark	-	-	-	-	\checkmark
Indonesia	\checkmark	E3	B10	E20 (2025)	B30 (2025)	\checkmark
Japan	\checkmark	\checkmark	-	0.5 million	Loe (2017)	\checkmark
Korea	\checkmark	-	B2	-	B5 (2020)	\checkmark
Malaysia	\checkmark	-	B7	-	B10	\checkmark
Mexico	\checkmark	E2	-	\checkmark	-	\checkmark
New Zealand	-	-	-	-	-	-
Papua New Guinea	-	-	-	-	-	-
Peru	\checkmark	-	-	E7.8	B5	\checkmark
The Philippines	\checkmark	E10	B2	E20 (2020)	B20 (2025)	\checkmark
Russia	\checkmark	-	-	-	-	-
Singapore	-	-	-	-	-	-
Chinese Taipei	\checkmark	-	-	-	-	\checkmark
Thailand	-	-	B7	4 billion L/yr	5 billion L/yr	\checkmark
United States	\checkmark	up to E15^	up to B10^	136 billion L	/yr (2022)^	\checkmark
Viet Nam	\checkmark	E5	-#	E10 (2017)	-	$\overline{\checkmark}$

Note: $\sqrt{}$ = existing; - = not existing currently; * = applied in New South Wales and Queensland for bioethanol and in New South Wales for biodiesel; ^ = applied at federal level and in some local territories or states; # = biofuels traded with no mandated blend rate; Mt = million metric tonnes; Loe = litres of oil equivalent; L/yr = litres per year.

Sources: APERC analysis and IEA statistics 2015.

APEC biofuels in BAU and the High Renewables scenario

Biofuel supply growing 2.7%/yr could meet over 5% of transport demand. Enough bioethanol to meet the growing demand, and surplus of biodiesel.

Sources: APERC analysis and IEA statistics 2015.

Bioethanol supply potential and demand

Biodiesel supply potential and demand

Bioethanol surplus in the US could offset shortfalls in South-East Asia and China. Excessive biodiesel supply, especially in South-East Asia, export opportunity.

Sources: APERC analysis and IEA statistics 2015.

APEC biofuels trading opportunities, ktoe

Fconomy	Net bioethar	nol balance	Net biodiesel balance		
Leonomy	2030	2040	2030	2040	
Australia	592	774	- 50	- 140	
Brunei Darussalam	0	0	0	0	
Canada	- 635	- 365	- 731	- 917	
Chile	0	0	0	0	
China	-9 456	-6 634	-3 735	-3 072	
Hong Kong	0	0	- 19	- 25	
Indonesia	-7 255	-8 678	1 3 212	20 854	
Japan	- 992	- 948	0	0	
Korea	52	65	-1 088	-1 175	
Malaysia	0	0	18 8 <mark>5</mark> 9	22 603	
Mexico	278	2 026	705	2 609	
New Zealand	- 20	- 25	146	132	
Papua New Guinea	7	13	609	1 011	
Peru	- 289	- 383	- 818	- 999	
The Philippines	- 919	-1 423	- 553	- 827	
Russia	1 067	3 200	57	126	
Singapore	0	0	0	0	
Chinese Taipei	- 77	- 69	0	0	
Thailand	620	299	-1 484	-1 895	
United States	<mark>1</mark> 1 501	20 831	4 059	4 199	
Viet Nam	76	- 209	-1 091	-1 791	

Sources: APERC analysis.

Summary

Challenges and opportunities

Challenges

- Uncertainty or insufficiency of renewable policy,
- Costs of renewable technologies for consumers, developers and investors,
- Fossil fuel subsidies,
- Lack of policy and taxation support for biofuels,
- Vehicle engine technology, and
- R&D for cost-effective 2nd and 3rd generation biofuels

Opportunities

- Set strong and clear renewable energy targets with supporting policy framework, see examples of China, Korea, Japan and the Philippines,
- Active research, development, demonstration and deployment (RDD&D),
- Removal of fossil fuel subsidies,
- Educational programs and training,
- Enhance international and interarea collaboration.

Recommendations for policy action

- Formulate a comprehensive, APEC-wide renewable energy plan,
- Renewables policy should cover power, transport, buildings and industry,
- Provide R&D support for current and next generation technologies,
- Provide fiscal and non-fiscal incentives, e.g. FiT, RPS, market access,
- Accelerate standardisation, development and deployment of biofuels, including advanced biofuels.

Thank you for your kind attention

http://aperc.ieej.or.jp/

Appendix

APEC supply cost curve for renewables in power

- Total cost of RE electricity = LCOE of RE generation + system (grid) costs
- A mix of additional RE generation is defined by using the supply curve, while knowing the required RE generation for a certain year;
- LCOE varies from \$0.03/kWh (hydro) to \$0.31/kWh solar PV rooftop.

APEC biofuels supply potential estimation

- 1st generation biofuels from 12 energy crops,
- maximising the arable land and enhancing productivity,
- surplus energy crops could be used as potential feedstock for biofuel <u>supply</u>,
- Biofuels <u>demand</u> is estimated through the current gov't biofuels policy and plan, in the absence of which, the supply potential is considered to introduce biofuels minimum blend rates.

