

OECD

Trust and the Future of Nuclear Energy

William D. Magwood, IV Director-General Nuclear Energy Agency

IEEJ 50th / APERC 20th Anniversary Joint Symposium 2016 Tokyo, Japan

26-27 May 2016

The NEA: 31 Countries Seeking Excellence in Nuclear Safety, Technology, and Policy

- 31 member countries + key partners (e.g., China)
- 7 committees and 75 working parties and expert groups
- The NEA Data Bank providing nuclear data, code, and verification services
- 21 international joint projects (e.g., the Halden Reactor Project in Norway)

Major NEA Separately Funded Activities

NEA Serviced Organisations

- Generation IV International Forum (GIF) with the goal to improve sustainability (including effective fuel utilisation and minimisation of waste), economics, safety and reliability, proliferation resistance and physical protection.
- Multinational Design Evaluation Programme (MDEP)

initiative by national safety authorities to leverage their resources and knowledge for new reactor design reviews.

• International Framework for Nuclear Energy Cooperation (IFNEC)

forum for international discussion on wide array of nuclear topics involving both developed and emerging economies.

21 Major Joint Projects

(Involving countries from within and beyond NEA membership)

- Nuclear safety research and experimental data (e.g., thermal-hydraulics, fuel behaviour, severe accidents).
- Nuclear safety databases (e.g., fire, commoncause failures).
- **Nuclear science** (e.g., thermodynamics of advanced fuels).
- Radioactive waste management (e.g., thermochemical database).
- **Radiological protection** (e.g., occupational exposure).
- Halden Reactor Project (fuels and materials, human factors research, etc.)

COP 21 and Energy Production

- UN-sponsored meeting at the end of 2015 concluded with 195 countries agreeing to develop approaches to limit global warming to below 2°C.
- Energy represents 60% of global CO₂ emissions - ³/₄ of global electric power production today is based on fossil fuel.
- Nuclear is the second largest lowcarbon power source globally (after hydro).

GHG emissions – baseline scenario:

Source: OECD Environmental Outlook 2050

2015 NEA/IEA Technology Roadmap

2015 edition

- Provides an overview of global nuclear energy today.
- Identifies key technological milestones and innovations that can support significant growth in nuclear energy.
- Identifies potential barriers to expanded nuclear development.
- Provides recommendations to policy-makers on how to reach milestones & address barriers.
- Case studies developed with experts to support recommendations.

Technology Roadmap Nuclear Energy

2015 NEA/IEA Technology Roadmap

What Are the Barriers to Large Global Expansion?

- Distortions and failures in electricity markets that impact financial competitiveness of baseload plants
- Persistent questions about long-term operation of current plants and constructability of Gen III/Gen III+ plants
- Unanswered questions about technology, cost, and regulatory issues regarding SMRs, Gen IV reactors, and other advanced technologies
- In some countries, public acceptance concerns about safety in the aftermath of the Fukushima accident
- Continuing international concerns about non-proliferation associated with expanded use of civilian nuclear power
- Ongoing challenges in many countries regarding long-term high level waste storage and disposal

Global Leaders in HLW Disposition

Waste type	Country	Location	Formation	Status	Projected Start
					of Operations
HLW/SF	Finland	Eurajoki	Crystalline rock	Licence pending	2020
HLW/SF	Sweden	Forsmark	Crystalline rock	Licence pending	2025
HLW/SF	Switzerland	3 potential	Opalinus clay	Siting regions	~2040
		sites		identified	
LILW-LL &	France	Region of	Callovo-Oxfordian	Siting region	2025
HLW/SF		Bure (URL)	Clay	identified	

The Trust Factor: An Element of National Policy in NEA Member Countries

Respondents agreeing that "most people can be trusted"

Source: Data from the fifth World Values Survey (2005 – 2008) www.worldvaluessurvey.org

Elements of Public Trust: *The Case of Nuclear Power*

The Operation of Nuclear Power Plants in any country relies on public trust in the following areas:

- Presence of a strong, independent regulator
- Confidence in the fairness of decision-making processes
- Confidence in the overall system of checks and balances
- Confidence that the use of nuclear energy is part of a global consensus

Photo: The Japan Times

The Characteristics of an Effective Nuclear Regulator

NEA Regulatory Guidance Booklets Volume 16, 2014, NEA/CNRA/R(2014)3

Elements of Public Trust: A Strong, Independent Regulator

Progress of Japan's NRA

- Commission-led agency established after 3/11; highly credible individuals appointed
- Quickly issued new nuclear power plant regulations and requirements
- Established a reputation for independence

Issues to be Addressed

- Needs additional skilled staff—recruitment not easy after 3/11
- Responding to IAEA IRRS comments regarding inspection practices
- Is there a better balance between independence and engagement?

Elements of Public Trust: Confidence in the fairness of the decision-making process

Public Confidence in decision-making regarding nuclear issues requires three major elements:

- 1) Transparency
- 2) Clarity
- 3) Engagement
 - a) Differences exist globally based on policy, law, and culture
 - b) Requires time, patience, training, and resources
 - c) Fukushima aftermath presents an important opportunity to develop new and better approaches in Japan

Fukushima Stakeholder Dialogues A Good Model for Engagement

NEA supported 12 dialogue sessions organised by ICRP between 2011 and 2015, with stakeholders from affected areas of Fukushima Prefecture

- Addressed many stakeholder concerns regarding radiological safety
- Reflected desire of residents to regain control of their lives and to return to normality
- Important message from those who evacuated and have not returned: "We may return, but only if the site is safe."

Lessons from the Stakeholder Dialogues

- **Mutual trust** is a necessary and central component of successful stakeholder engagement.
- Successful stakeholder engagement provides information and support to enable stakeholders to make **informed decisions** and develop a positive vision of their future.
- It is essential to clearly establish the **validity of all individual decisions** (i.e., whether to stay in an affected area or to relocate).
- Must plan for long-term technical support to stakeholders--not just short-term responses. Recognize that this can be very resource intensive.

Elements of Public Trust: *Confidence in the Overall System*

Trust in the Regulator is essential, but this must be bolstered by:

- A clear, fair process for the public to intervene and raise issues
- A coherent and consistent approach for review of decisions made by the regulator
- Integration of regulation with the overall system of administration and law

Photo: US NRC

Elements of Public Trust: Confidence in the Overall System

The Role of the Courts

- In some countries, judicial challenges are first addressed by the relevant administrative agency; in many others, this is not required
- Some countries apply clear standards of standing in cases, including the use of geographic components
- An area deserving study are conclusions reached by expert agencies on technical matters often reversed by courts?

Items to Consider

- Each nation has different legal traditions and standards based on long history and cultural norms.
- In the case of nuclear power, the courts play a vital role in:
 - enabling public issues to be considered (thus engendering public trust); and
 - establishing an environment that creates regulatory stability
- The evolving balance between these objectives will be a matter of great importance in many countries, including Japan.

The end of cheap China A shock at the polls for the Gandhis Goodbye Super Tuesday At last, progress on prostate cancer The broken-windows man

MARCH 10TH-16TH 2012 Economist.com

Nuclear energy The dream that failed

A 14-PAGE SPECIAL REPORT

Elements of Public Trust: *The Global Consensus*

The public in any country should have confidence that:

- Their country is not an outlier "going it alone" in using nuclear power
- There is a system and practice of international review and cooperation
- Nuclear power is seen broadly as part of the global energy future

Photo: Westinghouse Electric Company

Nuclear Power Plants under Construction (June 2015)

Location	No. of units	Net capacity (MW)
Argentina	1	25
Belarus	2	2 218
Brazil	1	1 245
China	24	23 738
Finland	1	1 600
France	1	1 630
India	6	3 907
Japan	2	1 325
Korea	4	5 360
Pakistan	2	630
Russia	9	7 371
Slovak Republic	2	880
Ukraine	2	1 900
United Arab Emirates	3	4 035
United States	5	5 633
Other: Chinese Taipei	2	2 600
TOTAL:	67	64 097

Global View of Nuclear Power Today

Source data: World Nuclear Association Update 2015

IEA 2°C Scenario: Nuclear is Required to Provide the Largest Contribution to Global Electricity in 2050

Source: IEA

Thank you for your attention

More information @ <u>www.oecd-nea.org</u> All NEA reports are available for download free of charge.

Follow us: 👔 🕒 in