

APERC Workshop at EWG53 Singapore, 24 April, 2017 **2-2. Development of Nuclear Energy in APEC**

Kazutomo Irie General Manager, APERC

Introduction / project overview

Nuclear power in the APEC region

Future scenarios and analysis

Economic modelling and analysis toward 2040 We discuss three cases: the *BAU*, *High-nuclear* and *Low-nuclear* scenarios

Conclusion

1. Introduction / project overview Major nuclear utilizing/expanding economies are in APEC

1. We refer to IAEA PRIS database. We adjusted data in several economies; for example, in Japan, Ikata unit 1 is excluded from the figure in operation, and the number of reactors under construction is revised from 2 to 3.

1. Introduction / project overview However, future direction varies by economy and uncertainties exist

- Existing "nuclear" economy: <u>China</u>, <u>Korea</u> and <u>Russia</u> hold their policy to expand nuclear, while <u>Chinese Taipei</u> shifts to a "phase-out" policy and uncertainties exist in <u>Japan</u> and <u>US</u> (e.g., due to existing reactors' retirement decisions).
- Newcomers: <u>Thailand</u> considers nuclear as an option. Whereas, the accident in 2011 and recent macroeconomic/energy-market situation negatively impacts several other economies, incl. <u>Viet Nam</u>

rucical plans and targets, selected economies		
China	Target by 2020: 58GW in operation and 30GW under construction	
Japan	Amended reactor regulation act to limit lifetime of reactors, yet the government aims a share of 20-22% in generation by FY2030.	
Korea	Planned addition by 2029: 18.2GW and retirements of KORI-I in 2017	
Chinese Taipei	Nuclear phase out policy by 2025	
Russia	Rosatom plans to expand nuclear mainly in the west part of Russia	
United States	NRC is preparing guidance for an 80-year lifetime (Subsequent License Renewal)	
"Newcomers"	Thailand: PDP2015 plans to install 2GW by 2036. Viet Nam: Halt to Ninh Thuan project.	

1. Introduction Project overview

- In April 2016, we launched a project on nuclear power in the Asia-Pacific region
- Main research agenda
 - Survey on current nuclear policy
 - Future scenario analysis "BAU", "Low-nuclear" and "High-nuclear"

Final report to be published in mid-2017 (after peer-review process)

Introduction / project overview

Future scenarios and analysis

Economic modelling and analysis toward 2040 We discuss three cases: the *BAU*, *High-nuclear* and *Low-nuclear* scenarios

Conclusion

2. Scenario analysis Three scenarios to discuss the future of nuclear in Asia-Pacific

• Business-As-Usual (BAU)

Current policy exists over the projection period (2013-2040). Recent nuclear construction/retirement trends considered. Proposed projects are not included in most of the economies.

• High-nuclear (High)

Proposed projects are included in addition to BAU projects driven by energy security, environmental and economic reasons. License extensions applied to most of the existing reactors.

Low-nuclear (Low)

Slow down of nuclear developments and accelerated retirements of existing reactors due to various concerns, including safety and waste management.

Note: The figure shows the year-end capacity. Source: APERC.

Example of economy assumption China – projected to be the largest nuclear economy in APEC

Note: The figure shows the year-end capacity. Sources: IAEA, State Council.

Example of economy assumption

Japan – license expiration of existing reactors has significant impacts

Current status (as of 1st Nov 2016)

- 42 reactors in operation
- 3 reactors under construction (Shimane-3, Oma-1, and Higashidori-1)
- Lifetime: 40 years, and an extension of maximum
 20 years allowed under nuclear reactor regulation act
- Strategic Energy Plan (published in April 2014): "Dependency on nuclear power generation will be lowered to the extent possible"

Scenario assumptions

	Lifetime of existing reactors	New reactor additions
High	60 years	3 units currently under construction
BAU	40 years (except for the reactors approved/examined for extension)	3 units currently under construction
Low	Same as BAU	No new reactors

Note: The figure shows the year-end capacity. T Sources: OCCTO and METI.

2. Scenario analysis China's increasing presence in APEC nuclear generation

APEC nuclear capacity [GW]

Note: Nuclear capacity in each economy is rounded. The number of block does not necessarily means the exact installed capacity. Source: APERC.

2. Scenario analysis APERC uses a long-term power supply model based on cost-optimization

Electricity supply model structure

- Future nuclear capacity is given as the scenarios (not based on optimization)
- The model determines fossil fuel-fired capacity and operation of all technologies, considering policy directions

Source: APERC.

Modelled technologies

Assumed electricity demand¹

- Electricity demand in APEC grows by 70% over the outlook period
- China and Southeast Asian economies more than double their demand

¹ Source: APERC (2016) "APEC Energy Demand and Supply Outlook 6th Edition"

2. Scenario analysis Fossil fuels dominate in the BAU and even in High-nuclear, but ...

APEC electricity generation, BAU

• Fossil fuel dominate in the BAU scenario, and even in the High nuclear scenario, although accelerated nuclear development contribute to reducing fossil fuel generation.

Source: APERC.

2. Scenario analysis ... but, nuclear contributes to APEC from the "3E" perspective

1 Emissions from electricity generation in APEC

 $\ensuremath{\mathbf{2}}$ The share of fossil fuel in electricity generation in APEC

Source: APERC.

Front-end model (LWR¹ model as an example)

1 LWR=Light Water Reactors. APERC also developed another model for heavy water reactors.

Source: World Information Service on Energy and APERC,

2. Scenario analysis Waste management : headache for nuclear utilizing economies

Spent fuel (cumulative from 2013, APEC)¹

- Estimated amount of spent fuel reaches 130-180 thousand tons of Uranium; even Lownuclear scenario reaches 70% of the level in High scenario
- Economies need to construct sufficient intermediate storage and final disposal facilities

1 This estimation assumes a once-through fuel cycle for all economies. Source: APERC.

Conclusion and future research agenda

- Nuclear power contributes to the APEC region from the "3E" perspectives, especially in terms of Environment and Energy security.
- Despite the capacity growth in the BAU, the share of nuclear remains around the current level due to increasing demand; accelerated installation and license extension of existing reactors are important to increase the share, as shown in the High Scenario.
- A large amount of spent fuel is estimated even in the Low Scenario.
 Economies need to implement policies to construct sufficient facilities for storage and/or disposal.
- For the "two-degree" scenario in the next outlook, comprehensive analysis on low-carbon generation sources—not only nuclear but also energy efficiency, renewables, CCS and so on—would be important.

Thank you for your kind attention!

http://aperc.ieej.or.jp/

